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Abstract. The overlap hypercube fermion is constructed by inserting a lattice fermion with hypercubic
couplings into the overlap formula. One obtains an exact Ginsparg–Wilson fermion, which is more com-
plicated than the standard overlap fermion, but which has improved practical properties and is of current
interest for use in numerical simulations. Here we deal with conceptual aspects of the overlap hypercube
Dirac operator. Specifically, we evaluate the axial anomaly and the index, demonstrating that the correct
classical continuum limit is recovered. Our derivation is non-perturbative and therefore valid in all topo-
logical sectors. At the non-perturbative level this result had previously only been shown for the standard
overlap Dirac operator with Wilson kernel. The new techniques which we develop to accomplish this also
for hypercubic kernels are of a general nature and have the potential to be extended to overlap Dirac
operators with even more general kernels.

1 Introduction

In gauge theories with fermions, the index of a Dirac op-
erator plays an important rôle. It is given as the differ-
ence of the number of left- and right-handed zero modes,
and due to the Atiyah–Singer index theorem [1] it can be
identified with the topological charge of the gauge field.
Therefore the same quantity also provides the integrated
axial anomaly.

On the lattice it is a non-trivial question if these quan-
tities can be recovered. In particular it is not clear a priori
if we obtain the correct axial anomaly in the classical con-
tinuum limit. The traditional lattice formulation by means
of the Wilson–Dirac operator DW does not allow for the
index theorem to be adapted: lattice gauge configurations
do not have natural topological sectors, and the Wilson
fermion does not have exact zero modes. Nevertheless the
axial anomaly can be reproduced [2]; a necessary condition
for this property is the absence of species doublers.

The situation is different for overlap fermions [3]. They
have good chiral properties according to their origin from
the overlap formalism [4,5], which are reflected by the fact
that their lattice Dirac operator Dov obeys the Ginsparg–
Wilson relation (GWR) [6,7]. In an even dimension 2n it
reads1

Dovγ2n+1 + γ2n+1Dov =
a

m
Dovγ2n+1Dov . (1.1)

a adams@lorentz.leidenuniv.nl
b bietenho@physik.hu-berlin.de
1 We refer to a Euclidean lattice of spacing a, and the

fermions belong to some unitary representation of the (unspec-
ified) gauge group.

Here m is a parameter which controls topological proper-
ties and the number of fermion species described by the
corresponding lattice fermion action. The GWR turns into
the standard condition for chiral symmetry in the contin-
uum limit.

Moreover, even on the lattice an exact chiral symme-
try exists [8]. It is lattice modified by a local term of O(a).
Explicitly, the variation of the spinor fields under the lat-
tice modified chiral transformation can be written in the
form [8]

δψ̄ = ψ̄
(
1 − a

2m
Dov

)
γ2n+1 ,

δψ = γ2n+1

(
1 − a

2m
Dov

)
ψ , (1.2)

which leaves the lattice action invariant.
The Ginsparg–Wilson relation excludes additive mass

renormalization. The index is well defined, since the ex-
act zero modes have a definite chirality [7].2 The question
arises if the correct axial anomaly is reproduced in the
continuum limit. In fact, the existence of some anomaly is
obvious since the fermionic measure is not invariant under
the transformation (1.2). The resulting anomaly takes the
form

A(x) = 2iq(x) , (1.3)

2 In the case of the overlap Dirac operator the index co-
incides with the overlap topological charge [4]. For the fixed
point fermion, which also solves the GWR, it coincides with
the classically perfect topological charge [7].
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where q(x) is the topological charge density,

q(x) = − 1
2m

tr
(
γ2n+1Dov

)
(x, x) . (1.4)

Generally we define the density O(x, y) of a lattice oper-
ator O by

Oψ(x) = a2n
∑

y

O(x, y)ψ(y) . (1.5)

Then the operator trace can be expressed as

Tr O = a2n
∑

x

trO(x, x) , (1.6)

where tr sums over spinor and gauge indices. In particular
the index is given by

index(Dov) = − 1
2m

Tr (γ2n+1Dov) = a2n
∑

x

q(x) . (1.7)

The question if one obtains the correct expression for
the axial anomaly has been studied in a number of papers.
This issue was first addressed in [6], where a perturbative
evaluation of the anomaly was given for a general Dirac
operator satisfying the Ginsparg–Wilson relation.3 Fur-
thermore, a perturbative evaluation of the axial anomaly
for very general lattice Dirac operators has been carried
out in [10]. In all cases the anomaly was found to reduce
to the correct continuum expression if the operator is local
and free of species doubling. However, the use of pertur-
bation theory restricts the validity of these arguments to
the sector of topologically trivial gauge fields. In fact, the
question for which Ginsparg–Wilson fermions the correct
anomaly holds also in topological sectors different from
zero seems to be non-trivial in the light of [11], which
presents an example where this is apparently not the case.
So far, the only Ginsparg–Wilson operator for which the
correct continuum limits of the axial anomaly and index
have been established non-perturbatively is the standard
overlap Dirac operator, which is given by substituting the
Wilson–Dirac operator D = DW into the overlap formula

Dov =
m

a

[
1 +A/

√
A†A

]
, A = D − m

a
. (1.8)

The continuum limit of the axial anomaly in this case has
been studied explicitly in [12–15]. In particular, a rigorous
non-perturbative demonstration that the anomaly and the
index have the correct continuum limit in all topological
sectors when m is in the physical (doubler-free) region was
given in [13,14].

Currently there is interest in non-standard overlap
Dirac operators obtained by inserting more general lat-
tice Dirac operators D into the overlap formula (1.8). The
background and motivation for this is discussed further
below. In particular, overlap Dirac operators where the

3 This perturbative evaluation was reconsidered in the con-
text of modern developments of the Ginsparg–Wilson relation
[9].

input D is a hypercubic fermion (HF) operator have been
the focus of attention.4 In the light of this development
it is pertinent to show at the non-perturbative level that
the axial anomaly and index for these non-standard over-
lap Dirac operators also have the correct continuum limit
in all topological sectors. As mentioned above, this has
so far only been shown for the standard overlap operator
where the input D is the Wilson–Dirac operator. The pur-
pose of the present paper is to establish this result at the
non-perturbative level for non-standard overlap Dirac op-
erators of specific current interest, namely those for which
the input D in the overlap formula is a HF operator. To
do this we follow the rigorous non-perturbative approach
of [13,14] for the standard overlap Dirac case, and take in-
spiration from [15], where a topological description of the
anomaly coefficient as the degree of a certain map was
derived which greatly facilitates its evaluation. However,
the key technical parts of the arguments in those papers
are specific to the standard overlap case – they rely on
the explicit form of the Wilson kernel and do not have
a straightforward generalization to more general kernels.
Therefore we have had to develop new techniques and for-
mulae to handle the more general HF case. In fact, our
techniques are of a general nature and have the poten-
tial to be used for even more general kernels. (The case of
overlap Dirac operator with completely general kernel has
further complications though, and is postponed to a later
analysis.)

Let us now discuss the background and motivation for
considering the non-standard overlap operators mentioned
above. Their use was suggested in [16]. The motivation is
to improve other properties of the overlap Dirac operator
– beyond chirality – which are also of importance for a
lattice fermion formulation, such as the quality of scaling,
locality and the approximate rotation invariance. We em-
phasize that chiral properties of the overlap operator Dov
continue to hold for any input lattice Dirac operator D
(free of species doubling) in (1.8), since Dov satisfies the
GWR for any such choice. The basic idea is to construct
a short range, doubler-free lattice Dirac operator D for
the input into the overlap formula which has the follow-
ing properties:
(i) good scaling and approximate rotational invariance,
and
(ii) good chirality in the sense that D is an approximate
solution of the GWR.

The property (ii) suggests that the overlap Dirac op-
erator Dov obtained from inserting D into the overlap for-
mula will inherit to a large degree the properties (i) of D,
and will furthermore have good locality properties. To see
this, note that if D is an exact solution of the GWR then
the overlap formula just givesD back again: Dov = D [16].
It is known that sensible ultra-local lattice Dirac opera-
tors cannot exactly satisfy the GWR [17]; but approximate
solutions are possible, and for these we have Dov ≈ D, in-

4 HF operators are generalizations of the Wilson–Dirac op-
erator which couple all sites within a lattice unit hypercube.
(Recall that the Wilson–Dirac operator couples only nearest
neighbor sites.)
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dicating that Dov approximately inherits the properties of
D and is also likely to have good locality properties since
D is ultra-local.

A specific construction of a short range lattice Dirac D
with the properties (i) and (ii) above arises from the per-
fect action formalism. This formalism produces, in princi-
ple, a lattice fermion action free of artifacts in the scaling
behavior via the iteration of renormalization group trans-
formations. Moreover, the corresponding lattice Dirac op-
erator satisfies the GWR as well [6]. The construction of
the perfect action can only be carried out explicitly for free
and for perturbatively interacting fermions [21].5 Still, at
the non-perturbative level one can construct approxima-
tions of the classically perfect action (or fixed point ac-
tion) of asymptotically free theories. The scaling artifacts
of the fixed point action tend to be very small – as a study
in the 2d O(3) model revealed [23] – and the fixed point
Dirac operator solves the GWR too [7]. Hence approxi-
mations, or truncations, of the fixed point Dirac operator
are natural candidates for operators with the properties
(i) and (ii) above.6 In particular, a hypercubic approxima-
tion of the fixed point Dirac operator has been considered,
and it was found in numerical studies that the use of this
operator as input in the overlap formula can significantly
improve the scaling, locality and convergence properties
of the overlap Dirac operator [18–20]. These properties
have been demonstrated in the Schwinger model [18], and
also in QCD they have a potential to compensate the ad-
ditional complication in DHF compared to DW: for the
HF described in [19] the locality of Dov is improved by a
factor of 2 in the exponential decay compared to the stan-
dard overlap fermion.7 Also the convergence rate increases
significantly. However, to establish the overlap HF oper-
ator as a viable Dirac operator for lattice QCD one also
has to check the conceptual basis, in particular whether
the correct axial anomaly and index are reproduced, and
this is the issue that we address in the present paper. Ex-
periments with simpler, non-standard operators inserted
in the overlap formula have been performed in [27]. All
those formulations are also covered as special cases by the
considerations in this paper.

The organization of this paper is as follows. In Sect. 2
we discuss the properties of DHF which are needed to com-
pute its axial anomaly and index in Sect. 3. The conclu-
sions and an outlook on further generalizations are given
in Sect. 4.

5 In that case, the axial anomaly takes the correct form even
at finite lattice spacing [22].

6 For direct QCD applications of a truncated fixed point
Dirac operator, see [20,24]. However, the truncation distorts
the chiral symmetry; indeed, even for truncated perfect ac-
tions the additive mass renormalization can be considerable
[25]. Chiral symmetry can be re-imposed though by inserting
the truncated fixed point operator into the overlap formula,
and this is another motivation to study the overlap operator
with truncated fixed point operator as kernel.

7 This number refers to quenched QCD at β = 6, and the
corresponding test for the standard overlap fermion was per-
formed in [26].

2 The structure
of the hypercube Dirac operator

We are going to use the following conventions for
the γ matrices: (γµ)† = γµ , {γµ, γν} = 2δµν ,
γ2n+1 = in γ1 · · · γ2n , so that (γ2n+1)† = γ2n+1 and
tr(γ2n+1γ1 · · · γ2n) = (−2i)n. Throughout this paper sum-
mation over repeated indices is implied.

What we consider here is the minimally gauged HF–
Dirac operator, which we are going to describe now. For
techniques to simulate such HFs in QCD, see [28].

Assume the two lattice sites x and y to belong to the
same lattice hypercube, i.e. |xµ−yµ| ≤ a for µ = 1, . . . , 2n.
Then we denote by P (x, y) the set of lattice paths of
minimal length connecting x and y. All these paths are
inside the same hypercube again, their length is nxy ∈
{0, 1, . . . , 2n}, and the number of such paths is nxy!. Let
σ be one of these paths. In the presence of a compact lat-
tice gauge field Uµ(x) we denote by U(σ) the product of
link variables along the path σ. We also define the sign
function ε(t) = sign t for t �= 0, and ε(0) = 0. Then the
minimally gauged HF operator can be written as

DHF =
1
a

(
γµρµ + λ

)
, (2.1)

(ρµ)xy = κnxy

ε(xµ − yµ)
nxy!

∑
σ∈P (x,y)

U(σ) ,

λxy = λnxy

1
nxy!

∑
σ∈P (x,y)

U(σ) . (2.2)

The parameters κ1, . . . , κ2n and λ0, λ1, . . . , λ2n are cou-
pling constants. Here we stick to the simple γ-structure
of the Wilson fermion.8 The vector term ρµ alone charac-
terizes a generalized naive fermion, which would by itself
generate species doublers. The scalar term λ can be con-
sidered a generalized Wilson term which removes these
doublers (respectively attaches a mass of the cutoff scale
to them) for suitable couplings; see below. κnxy

and λnxy

couple one site x to 2nxy sites y.9
DHF has the correct formal continuum limit with van-

ishing bare mass precisely when

2n∑
j=1

2j
[

2n−1
j−1

]
κj = 1 ,

2n∑
j=0

2j
[

2n
j

]
λj = 0 . (2.3)

At a finite β one deviates from these constraints and am-
plifies each coupling (except for λ0) in order to compensate
its suppression by the link variable [19]. However, in the
current context we do impose the above constraints be-
cause they have to be restored in the classical continuum
limit. They can be used to eliminate κ1 and λ0 ; then DHF
contains 4n−1 free parameters κ2, . . . , κ2n ; λ1, . . . , λ2n.

8 HFs with a more general Clifford algebra have also been
used in QCD simulation; see [25,29,20].

9 The usual Wilson–Dirac operator with Wilson parameter
r and bare mass m0 is recovered by setting κ1 = 1/2 , λ0 =
2nr+am0 , λ1 =−r/2 and κj = λj = 0 for j ≥ 2.
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For our purposes it is useful to express DHF in a
coordinate-free way as follows. We use the parallel trans-
porters

T+µ(x, y) = Uµ(x)δx,y−aµ̂ ,

T−µ(x, y) = U†
µ(x− µ̂)δx−aµ̂,y , (2.4)

(where µ̂ is the unit vector in the µ direction) to define
the Hermitian operators

Sµ =
1
2i

(T+µ − T−µ) , Cµ =
1
2
(T+µ + T−µ) . (2.5)

Moreover we introduce the following notation for the sym-
metrized product of operators,

[O1 . . .Op]sym =
1
p!

∑
α

Oα(1) . . .Oα(p) , (2.6)

where the sum runs over all permutations α of {1, . . . , p}.
Then (2.2) can be re-expressed as

−i ρµ = Sµ

−
2n∑

p=2

2pκp

∑
ν2<···<νp ; νj �=µ ∀j

[Sµ(1 − Cν2 · · ·Cνp)]sym ,

λ =
2n∑

p=1

2p(−λp)
∑

ν1<···<νp

[1 − Cν1 · · ·Cνp ]sym . (2.7)

Note that ρ†
µ = −ρµ , λ† = λ; hence DHF satisfies γ2n+1-

Hermiticity,

D†
HF = γ2n+1DHF γ2n+1 . (2.8)

We now consider the zero modes of the free field (U=
1) “naive” HF–Dirac operator 1

aγµρµ and their “masses”
provided by the scalar term 1

aλ in (2.1). The free field
momentum representation of Sµ , Cµ (i.e. their eigenvalues
for the plane wave eigenfunction eikx/a) is obvious from
(2.5):

Sµ(k) = sin(kµ) ≡ sµ , Cµ(k) = cos(kµ) ≡ cµ . (2.9)

Hence the free field momentum representations10 of ρµ

and λ are

ρµ(k) (2.10)

= isµ

[
1 −

2n∑
p=2

2pκp

∑
ν2<···<νp ; νj �=µ ∀j

(1 − cν2 · · · cνp
)
]
,

λ(k) =
2n∑

p=1

2p(−λp)
∑

ν1<···<νp

(1 − cν1 · · · cνp). (2.11)

The former vanishes when sµ =0, so the naive HF–Dirac
operator has the usual zero mode at k = 0 and the famil-
iar 22n − 1 “doubler” zero modes for k at the corners of
10 Note that k represents a re-scaled momentum, which is 2π
periodic at any lattice spacing a. Nevertheless we denote k
simply as “the momentum”.

the Brillouin zone, just as in the case of the usual naive
Dirac operator. However, in addition to these, there can
be other zero modes corresponding to vanishing of the fac-
tor in the square brackets on the right-hand side of (2.10).
It can vanish for some momenta k with components differ-
ent from 0 and π, when κ2, . . . , κ2n are in certain regions
of the parameter space. These zero modes correspond to
new “exotic” spurious fermion species: if such a zero mode
occurs at k = k(0) we set k = k(0) + k′ and find that the
leading order term in the expansion of γµρµ(k) around
k(0) is ∼ γµ

∑
ν �=µ k

′
ν . The corresponding propagator does

not describe a usual Dirac fermion species. These exotic
species are excluded though, if the parameters κ2, . . . , κ2n

satisfy

χµ[κ2, . . . , κ2n](k) (2.12)

≡
2n∑

p=2

2pκp

∑
ν2<···<νp ; νj �=µ ∀j

(1 − cν2 · · · cνp) < 1 ∀ k.

(Note that if this is satisfied for a particular index µ then
it is satisfied for all µ = 1, . . . , 2n. Also, since χµ = 0 at
k = 0, the condition χµ < 1 is the same as χµ �= 1.)

At this point it is natural to ask: what are the values
of κ1, . . . , κ2n that are of interest in practice, and do they
satisfy (2.12)? The values of λ1, . . . , λ2n used in practice
are also relevant here since they determine λ(k) and hence
the masses of the doubler fermion species. As discussed in
the introduction, one of the main aims in choosing the
coupling parameters is to make DHF as close as possible
to satisfying the GW relation. The procedure of truncating
perfect fermions (described in Sect. 1) led to the following
values for the couplings [25,16] in dimensions 2n=2 and
2n=4 :11
2n = 2 :

κ1 = 0.309, κ2 = 0.095 (2.13)

λ0 = 1.490, λ1 = −0.245, λ2 = −0.128;

2n = 4 :

κ1 = 0.137, κ2 = 0.032, κ3 = 0.011, κ4 = 0.005 ,
λ0 = 1.853 , λ1 = −0.061 , λ2 = −0.030 ,
λ3 = −0.016 , λ4 = −0.008 . (2.14)

In two dimensions the left-hand side of (2.12) is

χ(2n=2)
µ = 4κ2(1 − cν) εµν . (2.15)

The maximum of this, attained at cν = −1, is 8κ2 = 0.76
for the coupling values in (2.13); hence (2.12) is satisfied.
In the dimension four case the left-hand side of (2.12) can
be re-written as

11 We give the values to 3 decimal places; they are given to
higher precision in [25,16].
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Table 1. Masses in dimensions 2 and 4, with couplings given
by (2.13)–(2.14), in lattice units, and the masses of the cor-
responding modes of the Wilson–Dirac operator with Wilson
parameter r

2n = 2 :
Nπ 0 1 2
MHF 0 2.004 1.960
MW 0 2r 4r

2n = 4 :
Nπ 0 1 2 3 4
MHF 0 1.988 1.960 1.964 2.000
MW 0 2r 4r 6r 8r

χ(2n=4)
µ = 12κ2 + 24κ3 + 16κ4

+ 16
κ2

3

κ2

(
α3 − (α+ cν2)(α+ cν3)(α+ cν4)

)

− 16
(
κ4 − κ2

3

κ2

)
cν2cν3cν4 , (2.16)

where {µ, ν2, ν3, ν4} = {1, 2, 3, 4} and α = κ2/(2κ3). From
this we see that when κ2 ≥ 2κ3 (i.e. α ≥ 1) and κ4 ≥
κ2

3/κ2 the maximum of χ(2n=4)
µ is attained at cν2 = cν3 =

cν4 =−1. For the coupling values (2.14) this maximum is
0.93, hence (2.12) is again satisfied.

Let {k(j)} denote the momenta of the zero modes for
the free field naive HF–Dirac operator. The mass of such
a mode, provided by the scalar term in DHF , is M (j)/a
where M (j) ≡ λ(k(j)). To avoid species doubling in the
full HF–Dirac operator we impose the requirement on
λ1, . . . , λ2n that λ(k(j)) > 0 for k(j) �= 0. From (2.11)
we see that a sufficient condition for this is λ1 < 0 and
λp ≤ 0 ∀ p=2, . . . , 2n, which holds for the coupling values
in (2.13)–(2.14) (and of course also for the Wilson–Dirac
operator). For the usual zero and doubler modes, charac-
terized by sµ =0 ∀µ , i.e. kµ = 0 or π for each µ , let Nπ
denote the number of kµ equal to π. Then, from (2.11),
the mass M/a of the mode is seen to depend only on Nπ
as follows:

M(Nπ) =
2n∑

p=1

2p+1(−λp)
p∑

q=1

[
2n−Nπ

p−q

] [
Nπ
q

]
, (2.17)

with
[

Nπ
q

]
≡ 0 for q > Nπ. From this the masses in dimen-

sions 2 and 4, with couplings given by (2.13)–(2.14), can
be determined (see also Figs. 1 and 2 in [16]). We list them
in Table 1 in lattice units. For comparison we also list the
masses of the corresponding modes of the Wilson–Dirac
operator with Wilson parameter r.

The HF doubler masses are all close to 2 in lattice
units, reflecting the fact that the free field DHF with the
coupling values from (2.13) respectively (2.14) are good
approximate solutions to the GW relation (since for ex-
act GW solutions the eigenvalues lie on the circle in the
complex plane centered at (1/a, 0) with radius 1/a). We

also remark that, unlike in the Wilson case, MHF does not
always increase with increasing Nπ.

3 The continuum limit of the axial anomaly
for the overlap-HF–Dirac operator

For a given value of the parameter m, the momenta of the
zero modes of the free fieldDov are the k(j) withM (j) < m
(both defined in Sect. 2). Hence the parameter region in
which Dov has a physical zero mode and no doublers is
0 < m < min{M (j) �= 0}.

Our aim now is to evaluate the classical continuum
limit of the topological charge density q(x) given by (1.4),
or equivalently, the axial anomaly A(x) = 2iq(x), of the
overlap-HF–Dirac operator. Specifically, we consider the
situation where Dov is coupled to the lattice transcript of
a smooth continuum gauge field A = Aµ(x)dxµ, i.e. the
link variables are

Uµ(x) = T exp
(
a

∫ 1

0
Aµ(x+ (1 − t)aµ̂) dt

)
, (3.1)

where T implies t-ordering. We will derive the following
result:

If m �= M (j) ∀ j , then

lim
a→0

q(x) = I(κ2, . . . , κ2n;λ1, . . . , λ2n;m) qcont(x) , (3.2)

where

qcont(x) =
1

(2πi)nn!
(3.3)

· 1
2n

εµ1...µ2n
tr
[
Fµ1µ2(x) · · ·Fµ2n−1µ2n

(x)
]

is the continuum topological charge density and
I(κ2, . . . , λ2n;m) is the degree of a certain map Θ :
T 2n → S2n, given in (3.22) below. In particular,
I(κ2, . . . , λ2n;m) = 1 holds form in the physical (doubler-
free) region 0 < m < min{M (j) �= 0}. Thus, for m in this
region, q(x) and the axial anomaly reduce to the correct
continuum expressions in the classical continuum limit.
Furthermore, when the parameters κ2, . . . , κ2n satisfy the
constraint (2.12), then

I(κ2, . . . , κ2n;λ1, . . . , λ2n;m)

=
∑

{Nπ : M(Nπ)<m}

[
2n
Nπ

]
(−1)Nπ . (3.4)

We first derive the result in the infinite volume, i.e. on
a hypercubic lattice on R

2n, and thereafter we discuss the
finite volume 2n-torus case. The expression (1.4) can be
re-written as

q(x) = −1
2

tr

(
Hm√
H2

m

)
(x, x) , (3.5)
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where

Hm = γ2n+1(aDHF −m) = γ2n+1(γµρµ + λ−m) (3.6)

is the Hermitian HF–Dirac operator (normalized by 1/a).
We proceed as in the Wilson case treatment of [13,14]
by expanding (H2

m)−1/2 as a power series. First, H2
m is

decomposed as

H2
m = L− V ,

L = −ρ2 + (λ−m)2 ,
V = γµ[ρµ , λ] + 1

2γµγν [ρµ , ρν ] . (3.7)

As in the Wilson case we observe ‖V ‖ ∼ O(a2), which
is a consequence of the property ‖ [T±µ , T±ν ] ‖ ∼ O(a2)
and (2.7). Furthermore, a lower bound 0 < b < L ex-
ists when the lattice is sufficiently fine.12 This implies
that ||L−1V || ∼ O(a2) and consequently (H2

m)−1/2 =
(L[1 − L−1V ])−1/2 can be expanded as a power series in
L−1V when the lattice spacing a is sufficiently small. This
was done in the Wilson case [13,14] using an integral rep-
resentation of the inverse square root. (Note that the inte-
gral representation is needed since L and V do in general
not commute.) The argument relies only on general prop-
erties of L and V which continue to hold in the present
HF case; the treatment in [13,14] generalizes straightfor-
wardly to the HF and to arbitrary even dimension. Sub-
stituting the resulting expansion into (3.5) and using the
lattice δ-function

δx =
∫ π

−π

d2nk

(2π)2n
e−ikx/a φk , φk(y) ≡ eiky/a , (3.8)

to express q(x) as an integral over momentum space, one
obtains13

q(x)

= − c(n)
2a2n

∫ π

−π

d2nk

(2π)2n

tr(Hm(k) e−ikx/a V n eikx/a)
L(k)n+1/2

+O(a) , (3.9)

where Hm(k) and L(k) are the free field momentum rep-
resentations of Hm and L, and

c(n) =
1
n!

dn

dtn
(
1 − t

)−1/2∣∣∣
t=0

=
(2n)!

22n(n!)2
. (3.10)

To evaluate the limit a → 0 of (3.9) we start from the
following general observations,

12 This was established in the Wilson case for restricted values
of m in [26,30], and later for general m in [31]. The result will
be generalized to the present HF case, and more general cases,
in [32].
13 To derive (3.9) we have used the fact that the trace of the
product of γ2n+1 with the product of less than 2n γ matrices
vanishes. The factor 1/a2n in (3.9) originates from the a2n

in the operator representation Oψ(x) = a2n ∑
y O(x, y)ψ(y)

(O = Hm/
√
H2

m ). Hence the first term is of O(1).

e−ikx/a [T±µ , T±ν ] eikx/a = a2Fµν(x) ei(±kµ±kν) +O(a3),

e−ikx/a [T±µ , T∓ν ] eikx/a = −a2Fµν(x) ei(±kµ∓kν) +O(a3),
(3.11)

which imply

e−ikx/a [Sµ , Sν ] eikx/a = −a2Fµν(x) cµcν +O(a3) ,

e−ikx/a [Sµ , Cν ] eikx/a = a2Fµν(x) cµsν +O(a3) ,

e−ikx/a [Cµ , Cν ] eikx/a = −a2Fµν(x) sµsν +O(a3) ,
(3.12)

with the terms defined in (2.9). In the following we denote
the free field momentum representation of a general lattice
operator X by X(k). Then the relations (3.12) can be
expressed collectively as

e−ikx/a [X ,Y ] eikx/a

= −a2Fαβ(x) ∂αX(k) ∂βY (k) +O(a3) (3.13)

for X = Sµ , Cµ and Y = Sν , Cν . In fact, this relation
continues to hold when X and Y are general polynomials
of the Sµ and the Cµ. Since ρµ and λ are such polynomials
we can apply (3.13) to e−ikx/a V n eikx/a in the expression
(3.9) to obtain

tr(Hm(k) e−ikx/a V n eikx/a)

= in a2n εµ1...µ2n
tr
(
Fα1α2(x) · · ·Fα2n−1α2n

(x)
)

×
[
(λ(k) −m) ∂α1ρµ1(k) · · · ∂α2n

ρµ2n
(k)

−2n∂α1ρµ1(k) · · · ∂α2n−1ρµ2n−1(k) ∂α2nλ(k) ρµ2n(k)
]

+O(a2n+1) . (3.14)

We now note the two identities which will be crucial for
our further considerations:

εµ1...µ2n
tr
(
Fα1α2(x) · · ·Fα2n−1α2n

(x)
)

× ∂α1ρµ1(k) · · · ∂α2n
ρµ2n

(k)

= εµ1...µ2n tr
(
Fµ1µ2(x) · · ·Fµ2n−1µ2n(x)

)
εα1,...,α2n

× ∂α1ρ1(k) · · · ∂α2n
ρ2n(k) , (3.15)

εµ1...µ2n tr
(
Fα1α2(x) · · ·Fα2n−1α2n(x)

)
× ∂α1ρµ1(k) · · · ∂α2n−1ρµ2n−1(k) ∂α2nλ(k) ρµ2n(k)

= εµ1...µ2n tr
(
Fµ1µ2(x) · · ·Fµ2n−1µ2n(x)

)

×
2n∑

p=1

(−1)p ρp(k) εα0α1...αp−1αp+1...α2n

× ∂α0λ(k) ∂α1ρ1(k) · · · (3.16)
∂αp−1ρp−1(k) ∂αp+1ρp+1(k) · · · ∂α2nρ2n(k) .

These combinatorial identities rely only on the facts that
the ρµ(k) and λ(k) all commute, on Fµν(x) = −Fνµ(x),
and on the cyclic property of the trace. Replacing the
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left-hand sides of these identities by the right-hand sides
in (3.14), and introducing the real-valued functions

θ0(k) = −[λ(k) −m], θµ(k) = −i ρµ(k)
(µ=1, . . . , 2n) , (3.17)

we arrive at

tr
[
Hm(k) e−ikx/a V n eikx/a

]
dk1 ∧ · · · ∧ dk2n

= −(−i)n a2n εµ1...µ2n tr
(
Fµ1µ2(x) · · ·Fµ2n−1µ2n(x)

)

×
2n∑

p=0

(−1)p θp dθ0 ∧ · · · ∧ dθp−1 ∧ dθp+1 ∧ · · · ∧ dθ2n

+O(a2n+1) , (3.18)

where dθj ≡ ∂αθj dkα is the exterior derivative of θj . Sub-
stituting this into (3.9) and re-writing L from (3.7) as

L(k) = −ρ2(k) + [λ(k) −m]2 =
2n∑

p=0

θp(k)2 = |θ(k)|2 ,

(3.19)
we obtain lima→0 q(x) = I(κ2, . . . , λ2n;m) qcont(x), as we
claimed in (3.2), with

I(κ2, . . . , λ2n;m)

=
1
2
c(n)

n!
πn

∫
[−π , π]2n

1
|θ|2n+1 (3.20)

×
2n∑

p=0

(−1)p θp dθ0 ∧ · · · ∧ dθp−1 ∧ dθp+1 ∧ · · · ∧ dθ2n .

A little calculation shows that the integrand here can be
re-written as

2n∑
p=0

(−1)p θp

|θ| d
(
θ0
|θ|
)

∧ · · · ∧ d
(
θp−1

|θ|
)

∧ d
(
θp+1

|θ|
)

∧

· · · ∧ d
(
θ2n

|θ|
)
. (3.21)

This is precisely the pull-back to T 2n =] − π , π]2n of the
volume form on the unit 2n-sphere S2n ⊂ R

2n+1 via the
map

Θ : T 2n → S2n , Θ(k) :=
(
θ0
|θ| ,

θ1
|θ| , . . . ,

θ2n

|θ|
)
. (3.22)

Furthermore, the coefficient of the integral in (3.20) turns
out to be (recall definition (3.10))

1
2
c(n)

n!
πn

=
(2n)!

22n+1 n! πn
=

1
Vol(S2n)

, (3.23)

where Vol(S2n) is the volume of the unit 2n-sphere. Hence
expression (3.20) calculates the degree of the map (3.22),

I(κ2, . . . , λ2n;m) = deg(Θ) . (3.24)

This is a generalization of the topological evaluation of
the anomaly coefficient given in [15].

If θ
|θ| ∈ S2n ⊂ R

2n+1 is a regular point for the map Θ,
then it is a standard topological fact that deg(Θ) =

∑
l sl,

where sl = ±1 is the sign (relative to dk1 ∧ · · · ∧ dk2n) of
the integrand of (3.20) evaluated at a pre-image k(l) of
θ

|θ| , and the sum is over all the pre-images (labelled by
l). We choose θ

|θ| = (1, 0, . . . , 0). Then the pre-images k(l)

are precisely the subset of the k(j) introduced in Sect. 2
which satisfy θ0 =−[λ(k) −m] > 0, i.e. for which M (j) =
λ(k(j)) < m. Moreover, the integrand in (3.20) reduces
at these momenta to dθ1 ∧ · · · ∧ dθ2n. To determine the
sign of this term at a given k(j), recall from (2.10) that
θµ(k) = −iρµ(k) = Sµ(k)[1−χµ(k)] with χµ(k) as defined
in (2.12). It follows that

dθ1 ∧ · · · ∧ dθ2n

=
( 2n∏

µ=1

Cµ(k)
)( 2n∏

ν=1

(1 − χν(k))
)

dk1 ∧ · · · ∧ dk2n

+terms with at least one Sµ(k) factor. (3.25)

If 0 < m < min{M (j) �= 0}, then there is precisely one
k(j) for which M (j) < m, namely k(j) = 0. In this case,
since χµ(0)= 0 ∀µ , (3.25) yields dθ1 ∧ · · · ∧ dθ2n

∣∣∣
k=0

=

dk1 ∧ · · · ∧ dk2n

∣∣∣
k=0

, i.e. the sign is +1, so deg(Θ) = 1
in this case, as we claimed. Let us now consider the case
where the parameters κ2, . . . , κ2n satisfy the constraint
(2.12), i.e. χµ(k) < 1 ∀µ , k. Then the k(j) are pre-
cisely the k at which Sµ(k) = 0 ∀µ , so the terms with
Sµ(k) factors in (3.25) vanish and the sign of the re-
mainder is given by

∏2n
µ=1 Cµ(k(j)). This sign is (−1)N

(j)
π

where N
(j)
π is the number of components of k(j) which

are equal to π. Recalling from Sect. 2 that M (j) depends
only on N

(j)
π in this case, and noting that the num-

ber of k(j) with N
(j)
π = Nπ is

[
2n
Nπ

]
, it follows that

deg(Θ) =
∑

{Nπ : M(Nπ)<m}
[

2n
Nπ

]
(−1)Nπ . This completes

the derivation of the results anticipated in (3.2)–(3.4) in
the infinite lattice setting.

The rigorous derivation of the expansion (3.9), carried
out along the same lines as in the overlap-Wilson case
[13,14], requires an assumption on the continuum field,
namely that Aµ(x) and its first few partial derivatives are
bounded on R

2n. Such bounds are guaranteed to exist if
A has a compact support on R

2n. However, having estab-
lished the result in (3.2)–(3.4) for gauge fields with com-
pact support, it can then be extended to general smooth
gauge fields using locality type arguments, in the same
way as in the overlap-Wilson case (see (3.45) in [13] and
the associated discussion). This relies on the existence of
a non-zero lower bound on H2

m .
In the finite volume 2n-torus setting the momentum

integrals in (3.8) and (3.9) become sums, so the deriva-
tion given above does not carry over directly to that set-
ting. However, using locality-based arguments one can
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show that the finite volume q(x) coincides with the in-
finite volume q(x) up to exponentially suppressed finite
size effects, thereby establishing that the continuum limit
results (3.2)–(3.4) continue to hold in the finite volume
setting. This was done in the overlap-Wilson case in [14];
the arguments there relied only on general properties and
carry over to the present HF case (given the aforemen-
tioned lower bound on H2

m); the details of all this will be
given in the general setting in [32].

In the light of the index formula (1.7) it then fol-
lows that when the overlap-HF operator is coupled to the
lattice transcript of a smooth continuum gauge field A
on T 2n with topological charge Q, then index(Dov) re-
duces to I(κ2, . . . , λ2n;m)Q in the limit a → 0. Thus the
HF fermionic topological charge reduces to the continuum
topological charge in the classical continuum limit when
the parameter m is in the doubler-free region, just as it
does in the Wilson case.

4 Summary

We repeat that the previous literature contains the fol-
lowing considerations about the axial anomaly of overlap
fermions.
(1) Perturbative considerations show that the correct con-
tinuum limit is obtained in the sector of topological charge
zero for any overlap operator; see in particular [10].
(2) There was also a rigorous, non-perturbative proof that
covers all topological sectors, but it was specific to the case
of the simplest standard overlap fermion, which uses the
Wilson–Dirac operator as an input [13,14].

The standard overlap operator is widespread in re-
cent simulations. However, there are attempts by various
groups to use also non-standard overlap operators [18–20,
27]. The operators used in those works are all included in
the class of HF overlap operators. For the latter we have
given in this paper a non-perturbative evaluation of the
continuum limit of the axial anomaly and index which is
valid in all topological sectors.

We have formulated the HF–Dirac operator in 2n-
dimensional Euclidean space in the form (2.7), which is
well-suited to analytic investigations. We used it first to
study the dependence of the doubler structure of DHF on
its coupling parameters. Then we evaluated the classical
continuum limits of the axial anomaly and index of the
overlap-HF–Dirac operator, showing that the correct con-
tinuum expressions are recovered when parameters are in
the physical (doubler-free) region. A noteworthy feature of
our continuum limit evaluation is that it relies only on gen-
eral properties of the HF–Dirac operator and not its ex-
plicit form. This is in contrast to the previous evaluations
in the Wilson case (a special case of the more general HF
structure), which all use the explicit form of the operator.
The main new technical observations which our approach
is based on are the general relation (3.13) and the iden-
tities (3.15)–(3.16). These ingredients allow the contin-
uum form εµ1...µ2n trFµ1µ2(x) · · ·Fµ2n−1µ2n

(x) of the axial
anomaly to be extracted, and its coefficient to be topo-
logically evaluated as the degree of a map Θ : T 2n → S2n

using only general properties of the HF–Dirac operator.
These properties are not specific to the HF case, and the
approach can be extended to completely general overlap
Dirac operators obtained by substituting a general ultra-
local lattice Dirac operator (involving the full Clifford al-
gebra of γ matrices) into the overlap formula (1.8), as it
was done in [20]. The full extension, which involves consid-
erable additional work, will be carried out in a forthcom-
ing paper [32], and it will be shown there that the axial
anomaly and index of the general overlap Dirac operator
Dov continue to have the correct classical continuum lim-
its in the physical (doubler-free) parameter region speci-
fied by 0 < m < min{M (j) �= 0}. It was worthwhile to
consider the overlap-HF case on its own, firstly because
of the current interest in using this operator in numerical
simulations, and secondly because it illustrates the main
ideas and techniques of the general case but without the
extensive formalism and additional complications of the
latter.
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